TDA Progress Report 42-70

May and June 1982
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An analytic method is devised for predicting the temperature distribution in typical
antenna structural back-up members. The results are in good agreement with those
obtained by a numerical shooting method. The analytic method developed in this work
has shown a good potential in greatly simplifying the thermal analysis process fo

complex back-up anienna structures.

. Introduction

Future requirements for deep space navigation and telem-
etry link communications point to the need for higher
frequency bands. At these higher frequencies, data rates are
better but antenna surface accuracy requirements are more
severe than those of the presently used S- or X-bands. Guided
by the accuracy needs, studies are now in progress on the
feasibility of constructing large Ka-band antennas which will
use frequencies at 32 GHz or higher (Ref. 1).

The construction requirements for these Ka-band antennas
are much more demanding than those for presently used
devices. For example, the reflective surfaces must be posi-
tioned and aligned much more accurately and must be
maintained during the life of the antenna against varying
gravity, wind, and thermal loadings. Environmental changes
such as temperature variations can have deleterious effects on
the antenna performance. Field thermal measurements
(Ref. 2) and analytic investigations are being conducted to
study the environmental effects on the structural members of
the large 64-m antenna. In the analytical investigation, which
is the subject of this article, we are interested in simulating the
temperature distribution throughout the complex back-up
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structural members given their physical properties, geometric
arrangement, and environmental conditions, such as air tem-
perature, wind velocity, and solar irradiation (insolation).

The simulation of the temperature pattern of a structural
member can be done by “conventional” numerical finite
difference methods in heat transfer which divide the member
under consideration into nodes and then apply heat balance
equations to each node. Rather than solving for an excessively
large network of nodes for a complex antenna back-up
structure, a new method is developed in this paper to save
effort and time. The method is analytical in nature and relies
on deriving a universal relationship for the temperature
variations and heat fluxes within each member. The methodol-
ogy is described only in this article and will be followed by
additional applications in subsequent TDA reports.

Il. Methodology Development

Consider a simple bar, of length L, as sketched in Fig, 1
subjected to solar radiation, conduction, convection, and
radiation heat exchange with the ambient air. The cross
section of the bar, 4, and its material properties are assumed
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constant along the bar’s length, For an element of incremental
length dx along the bar axis, whose temperature is T'(X), the
convection losses are given by:

dq, = hPdx(T-T) €3]
the radiative losses by:
dq, = eae.‘ﬁ'de(T“—T:) 2
the absorbed portion of the solar irradiation by:
dq, = alPdx (3

and the change in conductive heat transfer stored in the
element by:

dg,, == (kA g{-) dx @)

The complete heat balance equation at steady-state conditions
can be written as:

ﬂ—_hf B €0'P9/7 4 _ by olP

Equation (5), together with the boundary conditions

1]

at x=0 , T=T(0) (6

I

at x=L , T=T({) @)

forms a nonlinear boundary value problem for 7(X). In
general, such problems cannot be solved analytically and

numerical methods must be employed (Refs. 3 and 4). Several
of these methods are presented in the paragraphs which follow.

A. The “Shooting” Method

An outline of the “shooting” method and its use is given in
Ref. 4. Using the subroutine described in that reference,
Eq. (5) can be written as a system of equations in the form:

Y =¥ (8)

’
1 2

' q
Y, =C Y +CY +C, ©)

where Y| stands for the temperature, T, while Y, and Y, for
dT/dx and d2?T/dx? respectively, and the superscript (") for
d/dx. The constants C;, C, and Cj are defined as:

c, =L (10)

(11)

hP T - edPF .4 . alP

[ 4
e L B (12)

This numerical method will serve as a useful check on the
analytical results to be developed latet,

‘B. Perturbation Method

This analytic method of solving Eq. (5) using perturbation
requires that the equation must become linear in the limit of
some selected small parameter. The parameter C, in Eq. (10)
is small because of the Stefan-Boltzman constant ¢ of the
order 10710 while C, and C; from Egs. (11) and (12) are of
the order 1 and greater. The perturbation method assumes that
the solution can be written in the form:

T(x) = T,(x)+C, T,(x)+ C2T,(x)+ -+ (13)

Then, by inserting (13) into (5), one obtains a set of linear
equations such as:

a’T,

= -C,T,~C,=0 14)
d*T, .

— ~-C,T,-C,=T, (15)
d2T2 .

— ~C,T,- C, =T, (16)

which must be solved sequentially.

The disadvantage of applying this method for our case is
that once an expression for T, is found by solving Eq. (14),
subsequent equations will become very complicated due to the
presence of terms such as Tg, Tf, etc. For this reason, the
perturbation method was not examined further.
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C. Linearization Method

Equation (5) will be reduced to a closed form solution for
T(X) by linearizing the radiation term in Eq. (2) by writing it
as:

dq, = b, Pdx(T-T) an

By comparing Eq. (17) with Eq. (2) one obtains:

h, = eo F(T*+T2)(T+T) (18)

r

The initial value of h, can be obtained by making the
approximation 7= T . This assumption is valid in cases where
one would not expect too much difference between the
temperature of the structure and that of the ambient air. Note,
however, that such an assumption cannot be used for a
structure in space where the temperature of the structure is
much different from the surrounding space temperature, (7, =
0 K). As the temperature pattern is known, a modified value
of &, can be obtained at the average link temperature.

By using Eq. (17) in Eq. (5), one obtains the linearized
differential equation:

T _ [MJT_ [(—m-——h’+hc)PT ¥ "‘IP]

a? kA kA tkal 19
and by making use of the abbreviations
(h,th)P
= —— 0)
Y P (20)
g BtMOP L ap @
T k4 a kA

one obtains the solution of Eq. (19) as:

& £
) - [T(L) ‘Tp‘] - [T(O - V] cosh /YL s <G
sinh AV/WL

¥ [T(O) _ -j—] cosh +/Tx + % 22)
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The ratio &/ from Egs. (20) and (21) is:

_51—=Ta+h+h (23)

Hence, the physical meaning of &/ represents a balance
between the incoming insolation and the rate of radiative and
convective losses, all with respect to the ambient temperature,
7. Therefore, £/ is an “equilibrium” temperature which will
be denoted by T,. In terms of T,, Eq. (22) becomes

[T(L)-T,] - [T(0) -T) cosh VYL

T() = inh
™) T sinh /Y x
+[T(Q)-T,] cosh \/¥x+T, (24)

Ill. Numerical Example

To check the validity of Eq. (24) versus the more accurate
shooting method, let us consider a numerical example. In this
example we assume a steel bar having the following geometry:
0.305m (1 ft)
= 091m (3 ft)

5.81 X 1073 m? (0.0625 ft?)

Perimeter, P =
Length, L

1}

Cross sectional area, 4

The two end temperatures are kept at:
T(0) = 311K (560°R)

T(L) = 322 K (580°R)

L J

while the ambient temperature is:
T, = 294 K (530°R)

For these temperatures, and assuming typical Goldstone
values for wind speed [16.1 m/hr (10 mph)] and insolation
(800 W/m?), we will use the following heat transfer coeffi-
cients:

conductivity, & = 45.0 W/mK (26.0 BTU/hr ft°R)

radiation heat transfer coefficient hr = 3,1 Wm? K (0.55
BTU/hr ft2R)

convective heat transfer coefficient, 2 = 22.7 W/m? K 4.0
BTU/hr ft2°R)




emissivity, € = 0.5

view factor, ¥ = 1.0

absorptivity, « = 0.4

insolation, 7 = 800 W/m? (254 BTU/hr ft2)

For these values, ¥ = 30.1 m™2 (2.8 ft.”%) and 7= 308 K
(552°R). The results of the shooting method and the
linearization method in Eq. (24) are shown in Tables 1 and 2.
A plot of the results of Table 2 is made in Fig. 2. The excellent
agreement between the analytical and numerical results vali-
dates the use of Eq. (24). Note that the temperature
distribution within the bar need not be monotonic; in this
particular case, the temperature within the bar reaches a point
where it is lower than either of the end temperatures.

IV. The Multi-link Problem

Consider now a system of 3bars linked together as
illustrated in Fig. 3. The physical and geometric properties of
each bar can be different and so can their exposure to solar
radiation. The temperatures at the junctions are assumed
to be unknown. The problem is to find a simple way of
determining these temperatures and then, by using Eq. (24), to
obtain the temperature distribution throughout the links.

The solution relies on the fact that, at each junction of two
or more members, the heat flux balance at steady state is

written as:

qu ik =0

Since the only heat transfer at the junction points is through
conduction, for the case we are considering, the following
equations are valid:

9,0 = [_k1A1 (%)0] _[szz (g;) L:L =0 (25
1
Gy, = [szz (%%)0]2~ [k A, (‘g} ]3 =0 (26

(27)
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In Egs. (25) through (27), the square brackets are subscripted
by the link number, while the derivitive dT/dx is to be taken
at the “beginning” (0) or the “end” (L) of the respective link.
The assignment of (0) and (L) to each link is completely
arbitrary. Note that, based on Eq. (24):

dT \/
- = T T TWL)-T h /YL
(dx>L o = (MO 1) - AW -T) coh VL]

(28)
ar\ _ Vv
<ZJ;) sinh \/— (TL) - T,) - (T(0) - T,) cosh /Y L]
(29)

By substituting Eq. (28) and (29) into Egs. (25) through (27),
one gets three equations and six unknowns, the unknowns
being the temperatures T(L), and T(0), (i= 1,2, 3). However,
three of these temperatures are redundant because of the
junction conditions:

7(0), = T(L), (30)
T(0), = T(L), (31)
TL), = 1(0), (32)

We choose to solve for 7(0), (= 1, 2, 3) and to use the

following abbreviations:

V7,

@ =kd, ———— (33)
sin 2/, L,

B, = ©,T, (cosh VL,-1) (34)

5, = ©, cosh V¥, L, (35)

Then, the system Egs. (25) through (27), by using Egs. (30)
through (32) and (24), can be written in matrix form as:
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6, +8, 0, -0, 7(0), 6,+8, 0, B, +6,)
-0, 6,+o, -0, 7(0), -0, 8,48, (B, +6y)
-9 ; 5 +8 7(0) 0 -6 B, +8,)
1 3 173 3 _ 1 3 1 P
T(0), = (39)
3 @
B, +8,
={ 6,18, (36)
where:
B, *+8
v 8 + 52 92 -0,
The solutions of Eq. (36) are given by: @D = |-9, 6,+6 -0, (40)
6, +6,) 6, -0,
-0, -0, 5, +38,
(6, *85) 8,+8, -0,
(61”33) -0, 81 +63
7(0), = @7
& V. Conclusions
In this first report we have outlined a simple, analytic
61 + 52 @, + ﬁz) '01 method for obtaining the temperature distributioq in a typical
arrangement of antenna structural back-up member. The
-0, @, + 63) —03 results were verified by the numerical shooting method. Good
agreement between the two methods was obtained. Further
-0 @, +8.) 5 +8 work will deal with setting up the matrices for more complex
7(0), = ! 1 3 (38)  Structures, with radiation exchange, and with comparison
2 7). between simulations and actual field measurements.
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Table 1. Example of temperature distribution ’ Table 2. Example of temperature distribution

obtained by shooting method (B) using the linearization method (C)

x T x T
0.00 0.560+03 0.00 0.560+03
0.10 0.559+03 0.10 < 0.559+03
.20 0.558+03 (.20 (.558+0)3
0.30 0.557+03 0.30 0.557+(3
0.40 0.557+03 0.40 0.556+03
0.50 0.556+03 0.50 0.556+03
0.60 0.556+03 0.60 0.555+03
0.70 0.555+03 , 0.70 0.555+03
0.80 0.555+03 0.80 ().555+03
0.90 0.555+03 0.90 0.555+03
1.00 0.555+03 1.00 0.554+03
1.10 0.555+03 1.10 0.554+03
1.20 0.555+403 1.20 ).554+03
1.30 0.555+03 1.30 0.555+03
1.40 0.555+03 1.40 0.555+03
1.50 .555+03 1.50 0.555+03
1.60 0.555+03 1.60 (.555+03
1.70 0.556+03 1.70 0.556+03
1.80 0.556+03 1.80 (.556+03
1.90 0.557+03 1.90 0.557+03
2.00 0.558+03 2.00 ).558+03
2.10 0.559+03 2.10 0.558+03
2.20 0.560+03 2.20 0.560+03
2.30 0.561+03 2.30 0.561+03
2.40 0.562+03 2.40 0.562+03
2.50 0.564+03 2.50 (0.564+(3
2.60 0.566+03 2.60 0.566+03
2.70 0.569+03 2.70 0.569+03
2.80 0.572+03 2.80 0.572+03
2.90 0.576+03 2.90 0.576+03
3.00 0.580+03 3.00 0.580+03

115




. Ly %
T
/A T l T )
7 \\| LLIN¢ \‘ dq
!
qk—'—/j/ / 7—’ Ut 9x
{ L\
| ] r
o} L
I—»x

116

Fig. 1. Physical system for a simple bar
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Fig. 2. Temperature distribution in a simple bar using
finearization method
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Fig. 3. Three-bar linkage




